Problemă rezolvată dintre subiectele propuse pentru clasa a IX-a la ONGM 2020-2021.
Enunț
Suma elementelor mulțimii P :
P= \left\{ n \in \mathbf{Z} \ \Bigg | \ \dfrac{2n^2+n+3}{2n+1} \in \mathbf{Z} \right\}
este egală cu:
A. -4 B. -3 C. -2 D. 0 E. 1
Rezolvare
\dfrac{2n^2+n+3}{2n+1} =\dfrac{n\cdot(2n+1)+3}{2n+1} = \\\;\\ = \dfrac{n\cdot\cancel{(2n+1)}}{\cancel{2n+1}} + \dfrac{3}{2n+1} = n + \dfrac{3}{2n+1}\\\;\\ \left. \begin{array}{ll} \dfrac{2n^2+n+3}{2n+1} \in \mathbf{Z} \\\;\\ n \in \mathbf{Z} \end{array} \right \} \implies \\\;\\\ \implies \dfrac{3}{2n+1} \in \mathbf{Z} \Leftrightarrow \\\;\\\ \left. \begin{array}{ll} \Leftrightarrow 2n + 1 \in D_3\\\;\\ D_3 = \left\{-3,-1,1,3\right\} \end{array} \right \}\implies \\\;\\\ \implies \left \{ \begin{array}{ll} 2n + 1 = -3 \\ sau\\ 2n + 1 = -1\\ sau\\ 2n + 1 = 1\\ sau\\ 2n + 1 = 3 \end{array} \right . \implies \\\;\\\ \implies \left \{ \begin{array}{ll} 2n = -4 \\ sau\\ 2n = -2\\ sau\\ 2n = 0\\ sau\\ 2n = 2 \end{array} \right . \implies \\\;\\\ \implies \left \{ \begin{array}{ll} n = -2 \\ sau\\ n = -1\\ sau\\ n = 0\\ sau\\ n = 1 \end{array} \right . \implies \newline \\\;\\\ \implies P=\left\{-2,-1,0,1\right\}
Deci suma elementelor lui P este -2 + (-1) + 0 + 1 care este -2 iar răspunsul corect este C.
[the_ad_group id=”102″]