Fie \;ABC \;un \;triunghi \;echilateral\; și\; punctul \;D\; astfel \;încât\;\;\;\;\;\; \\BD = BC, \;m(\measuredangle CBD) = 20^{\circ}\; iar\; punctele \;A\; şi \;D\; sunt \;situate\;\;\\de \;o \;parte \;și \;de\; alta \;a\; dreptei \;BC.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \\Fie M \in [ \,BD ] \, astfel\; încât\; BM = DC.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \\Aflați \;m(\measuredangle DMC).\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;
Pentru a găsi măsura unghiului DMC vom uni pe A cu M și vom calcula măsurile unghiurilor AMB si AMC.
\left. \begin{array}{ll} m(\measuredangle DBC)\;=\; 20^{\circ} (din\;ipoteză)\\\;\\ m(\measuredangle ABC)\;=\; 60^{\circ}(△ ABC\; △ echilateral) \\ \;\;\;\;\;\;\;\;\\m(\measuredangle ABM)\; = \; m(\measuredangle ABC) + m(\measuredangle CBM)\\\;\\ \end{array} \right \} \implies\;\\\; \\ \implies m(\measuredangle ABM)\; = 60^{\circ} \;+\;20^{\circ} \implies\;m(\measuredangle ABM)\; = 80^{\circ}\\ \;\\ \;\\
BC = BD\;(din\;ipoteza) {\implies}△ CBD\; △isoscel\implies\;\;\;\;\;\;\;\;\;\;\;\;\;\\\;\\ \left. \begin{array}{ll} \implies \;m(\measuredangle BCD)\;=\;m(\measuredangle CDB)\; \\ \\ \;\;\;\;\;\;\;\;\;\;m(\measuredangle DBC)\;=\; 20^{\circ}\;(din\; ipoteză) \\ \\\;\;\;\;\;\;\;\;\;\;m(\measuredangle CBD)\; + \; m(\measuredangle CDB) + m(\measuredangle DCB) = 180^{\circ}\\\;\\ \end{array} \right \} \implies\; \\\;\\\implies2 \cdot m(\measuredangle CDB) + 20^{\circ} = 180^{\circ} \implies\; 2 \cdot m(\measuredangle CDB) = 160^{\circ} \implies\;\\\;\\\implies\; m(\measuredangle CDB) = 80^{\circ}
\left. \begin{array}{ll} \left. \begin{array}{ll} m(\measuredangle ABM)\; = 80^{\circ} \\ \;\\ m(\measuredangle CDB) = 80^{\circ} \end{array} \right \} \implies m(\measuredangle ABM)\; =\;m(\measuredangle CDB) \\\;\\\\\;\\ \left. \begin{array}{ll} △ ABC\; △ echilateral\implies AB = BC\\\;\\ BC = BD \;(din\; ipoteză) \end{array} \right \} \implies AB = BD\;\\\;\\\\\;\\ BM = CD \;(din\;ipoteză)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \end{array} \right \} \overset{LUL} {\implies} \\ \; \\\ \;\\\overset{LUL} {\implies}\;△ABM\;{\displaystyle \equiv }\;△BDC\implies \\ \;\\ \;\\ \left. \begin{array}{ll} \implies m(\measuredangle AMB)\; = m(\measuredangle BCD) \\\;\\ \;\;\;\;\;\;\;\;\;m(\measuredangle BCD) = 80^{\circ} \end{array} \right \} \implies m(\measuredangle AMB) = 80^{\circ} \\\;\\\;\\ \left. \begin{array}{ll} m(\measuredangle AMB) = 80^{\circ}\\\;\\ m(\measuredangle ABM) = 80^{\circ} \end{array} \right \} \implies △BAM\;△isoscel
\left. \begin{array}{ll} △ABM\;{\displaystyle \equiv }\;△BDC\implies m(\measuredangle BAM) = m(\measuredangle DBC) \\\;\\ m(\measuredangle CBD) = 20^{\circ} (ipoteză) \end{array} \right \} \implies \\\;\\\;\\ \left. \begin{array}{ll} \implies m(\measuredangle BAM) = 20^{\circ} \\\;\\ \;\;\;\;\;\;\;\;\;m(\measuredangle BAC)\;=\; 60^{\circ}(△ ABC\; △ echilateral) \\\;\\ \;\;\;\;\;\;\;\;\;m(\measuredangle BAC) = m(\measuredangle BAM) \;+\; m(\measuredangle MAC) \end{array} \right \} \implies \\\;\\\implies m(\measuredangle MAC) = m(\measuredangle BAC)\;-\;m(\measuredangle BAM) \implies \\\;\\\implies m(\measuredangle MAC)\; =\; 60^{\circ}\;-\;20^{\circ}\implies m(\measuredangle MAC)\; =\; 40^{\circ}
\left. \begin{array}{ll} △BAM\;△isoscel\implies AB \;= \;AM \\\;\\ △ABC\;△echilateral\implies AB\; = \;AC \end{array} \right \} \implies \\\;\\\;\\ \implies AM=AC \implies △MAC\;△isoscel \implies \\\;\\ \left. \begin{array}{ll} \implies m(\measuredangle AMC) = m(\measuredangle ACM)\; \\\;\\ \;\;\;\;\;\;\;\;\;m(\measuredangle MAC)\; =\; 40^{\circ}\\\;\\ \;\;\;\;\;\;\;\;\;m(\measuredangle MAC) + m(\measuredangle ACM) \;+\; m(\measuredangle CMA) \; =\; 180^{\circ}\\\;\\ \end{array} \right \} \implies \\\;\\\implies 40^{\circ} + 2 \cdot m(\measuredangle AMC) = 180^{\circ} \implies 2 \cdot m(\measuredangle AMC) = 140^{\circ}\implies \;\\\\\;\\\implies m(\measuredangle AMC)\; =\; 70^{\circ}
\left. \begin{array}{ll} m(\measuredangle BMA) + m(\measuredangle AMC) \;+\; m(\measuredangle CMD) \; =\; 180^{\circ}\\\;\\ m(\measuredangle AMB) \;= \;80^{\circ}\;\\\;\\ m(\measuredangle MAC)\; =\; 70^{\circ} \end{array} \right \} \implies \\\;\;\\\implies m(\measuredangle CMD) =180^{\circ}-m(\measuredangle BMA)-m(\measuredangle AMC) \;\implies\\\;\\\implies m(\measuredangle CMD) =\;180^{\circ}-\;80^{\circ}\;\;-70^{\circ}\;\;\implies\\\;\\\implies m(\measuredangle CMD) =\;30^{\circ}